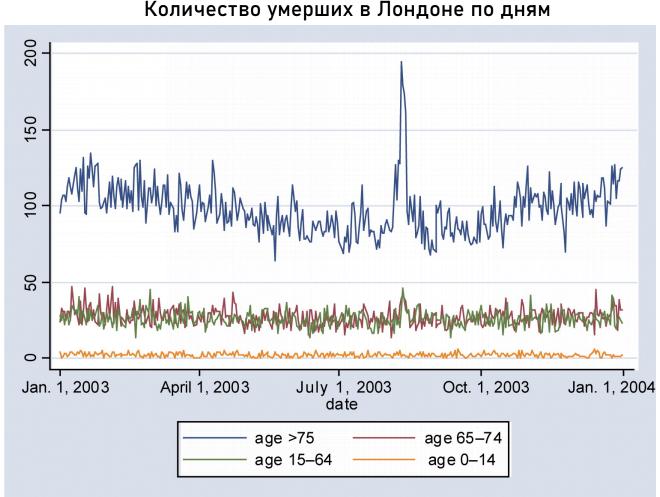
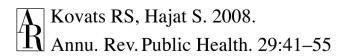
12 ноября 2022 года

разбираемся в вопросе с Михаилом Максименко

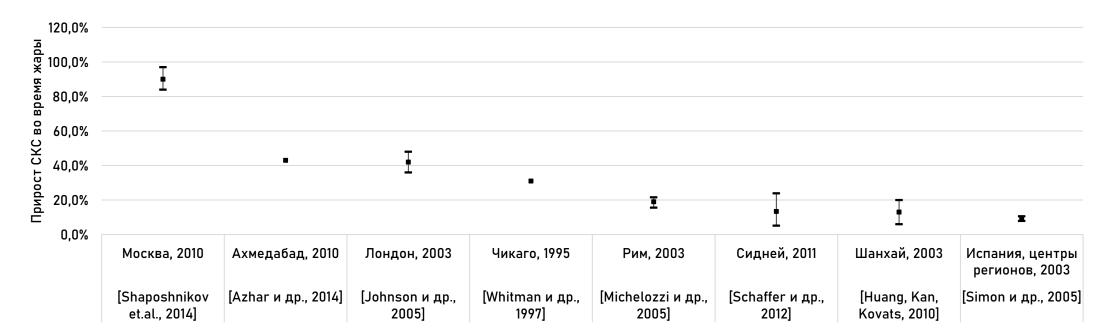
Избыточная смертность в городах и регионах европейской России во время жары 2010 года


Избыточная смертность в городах и регионах европейской России во время жары 2010 года


План доклада

- Влияние жары на здоровье: ключевые факторы и история исследования проблемы
- Что такое избыточная смертность и как ее посчитать?
- Потери во время жары 2010 года в России
- Возможные факторы и временные эффекты

Влияние волн жары на здоровье


- Быстрый рост городов и активная застройка
- «Urban heat island = death island?» (Buechley et.al., 1972)
- Тепловой стресс: обострение хронических БСК
- Загрязнение воздуха: рост смертности от БОД
- Наиболее уязвимая группа: население 65+

История изучения проблемы

- Дискуссия о влиянии кондиционеров на избыточную смертность (Ellis, 1972; Marmor, 1975)
- Волна жары в Чикаго 1995 г.: исследование поведенческих факторов и социальной изоляции (Semenza et.al., 1996; Klinenberg, 1999)
- Волна жары в Европе в 2003 г.: 70 тыс. смертей (Robine et al., 2007), 15 тыс. во Франции (Foulliet et al., 2006), 1,4 2,2 тыс. в Нидерландах (Garssen et al., 2005), 3,1 тыс. в региональных центрах в Италии (Conti et al., 2005), 6,5 8,6 тыс. в Испании (Simon et al., 2005)
- В России исследования в рамках отдельных городов Юга (Revich et.al., 2015), Севера (Revich, Shaposhnikov, 2010), Сибири (Chernykh, Taseiko, 2018; Revich, Shaposhnikov, 2017), Дальнего Востока (Grigorieva, 2020); 11 тыс. погибших во время жары 2010 г. в Москве (Shaposhnikov et al., 2014)

Дискуссионные вопросы и нерешенные задачи

- Географические особенности избыточной смертности: лучшая адаптация к жаре населения южных городов (Basu, 2009) или более низкая смертность на Севере вследствие миграционного отбора (Grigorieva, Revich, 2021)?
- Сельско-городская дифференциация (Hajat, Kovats, Lachowycz, 2006), уровень социально-экономического развития (Gouveia et al.,2003, Rey et al. 2009, Oudin Aström et al. 2020)
- Временные эффекты: наличие и продолжительность лагов между температурой и пиками смертности (Rocklov et.al., 2012), «эффект жатвы» (Toulemon, Barbieri, 2008)
- Выбор индикаторов температуры и состояния атмосферы: температурные и биоклиматические индексы (Shartova и др., 2018), концентрация различных загрязняющих веществ (Peng и др., 2005)

Данные и методы

Рамки исследования:

- Городское и сельское население 54 регионов европейской России, 126 городов с населением 100+ тыс. чел.
- Временной охват: 05.07-22.08.2010 (27 33 недели 2010 г.), 2005-2009 гг. референтный период

Источники данных:

- Числа умерших по пятилетним возрастным группам (0,1-4,5-9, ..., 85+) за 2005-2010 гг. из деперсонифицированной базы умерших Росстата:
- Половозрастная структура населения (для стандартизации смертности):
 - Большие города: регламентные таблицы, полученные по запросу в Росстат
 - Городское и сельское население субъектов РФ: среднегодовая численность из базы данных ЦДИ РЭШ

Что такое избыточная смертность?

- Наблюдаемая смертность (O_i) : фактическое число умерших
- Ожидаемая смертность (E_i): ретроспективный прогноз на основе модели базового уровня
- Модель базового уровня: выбор регрессионного уравнения на основе минимизации AIC
- Оценка понедельных значений чисел умерших и СКС с учетом данных за 2005-2009 гг.
- Расчет 95%-доверительных интервалов при помощи бутстрепа

	Смертность	Избыточная смертность
Абсолютные показатели	Число смертей	Превышение наблюдаемого числа смертей над ожидаемым: $O_i - E_i$
Относительные показатели	Стандартизованные коэффициенты смертности	Отношение превышения к ожидаемому уровню смертности: $(O_i - E_i)/E_i$

(1) Среднее за 5 лет:

$$g(\lambda_{week,year}) = \beta_{0,week}$$

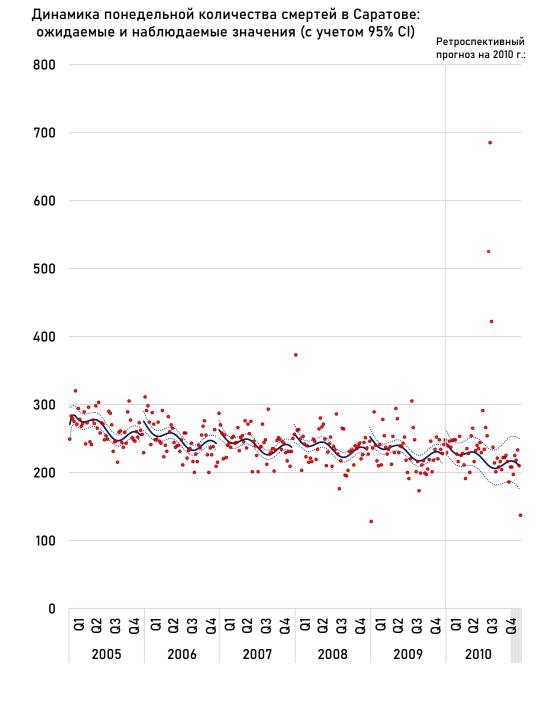
(2) Линейный тренд за 5 лет:

$$g(\lambda_{week,year}) = \beta_{0,week} + \beta_{1,week} year$$

(3) Базисный сплайн:

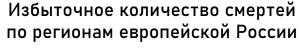
$$g(\lambda_{week,year}) = \beta_{0i} + \beta_{2i} bs(week, d, df = 7)$$

(4) Ряд тригонометрических функций:

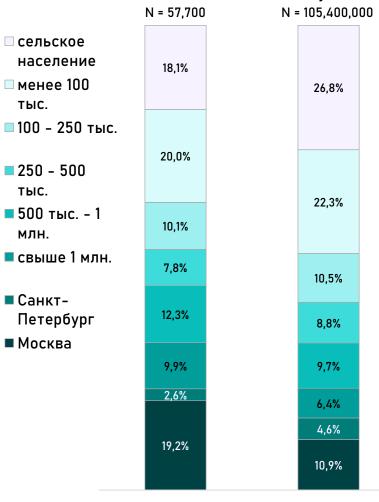

$$g(\lambda_{year,week}) = \beta_0 + \sum_{i=1}^{n} \beta_i \sin\left(\frac{2\pi * week}{period}\right) + \beta_{2i} \cos\left(\frac{2\pi * week}{period}\right)$$

(5) Комбинация нескольких моделей:

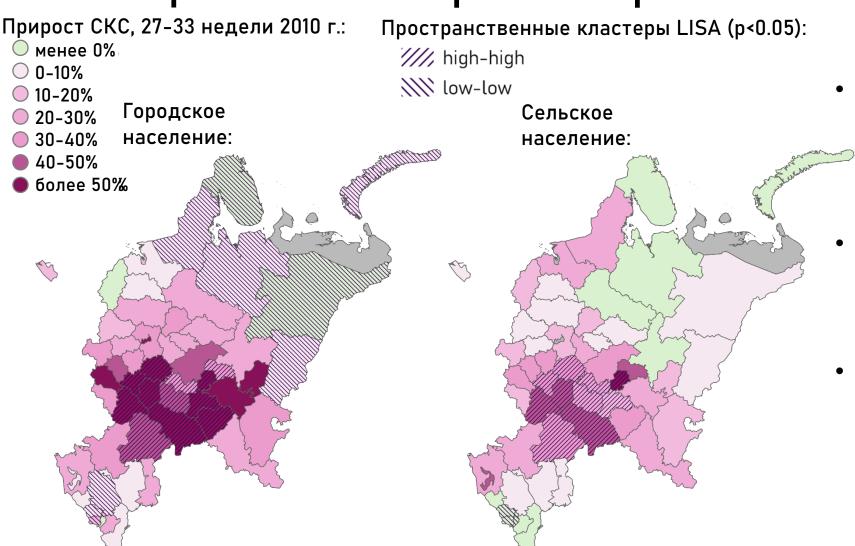
Оптимальная модель базового уровня


- Отрицательная биномиальная регрессия
- В общей сложности были рассмотрены 55 моделей с различными гиперпараметрами
- Подбор наилучшей модели по наиболее частому минимальному значению AIC по 126 городам и 54 регионам (включая расчеты отдельно для городского и сельского населения)
- Выбранная модель содержит трендовую и сезонную (две пары тригонометрических функций с периодом 52 недели) компоненты, кубический сплайн с 7 узлами

$$log\left(E(d_{week,year})\right) = \beta_0 + \beta_1 y + \beta_2 bs(week, d = 3, knots = 7) + \beta_3 \sin\left(\frac{2\pi * week}{52}\right) + \beta_4 \cos\left(\frac{2\pi * week}{52}\right) + \beta_5 \sin\left(\frac{2\pi * week}{52}\right) + \beta_6 \cos\left(\frac{2\pi * week}{52}\right)$$

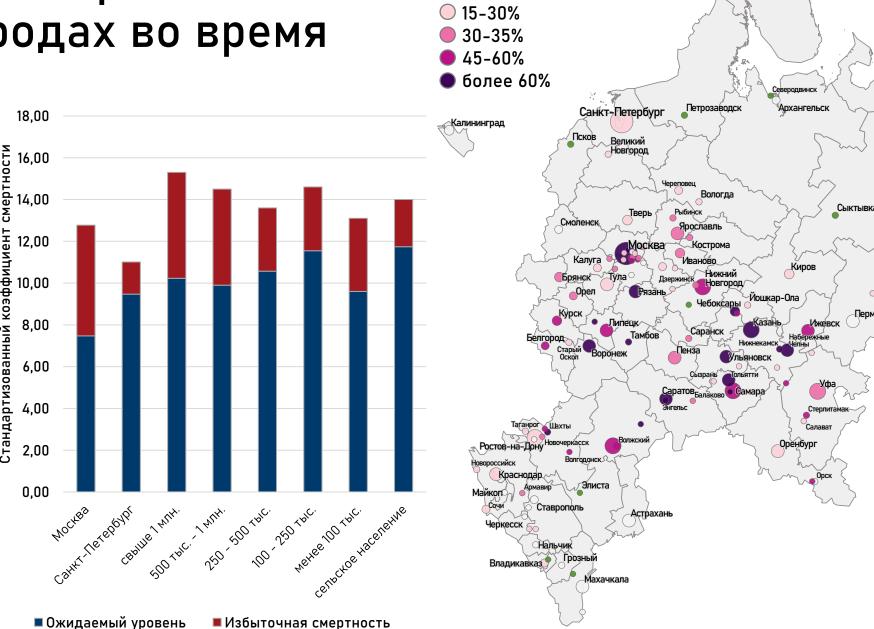

Оценка потерь населения во время жары 2010 г. Избыточное количе

- Общее число избыточных смертей в европейской России составило 57,7 тыс. чел. (95% СІ: 41,7-72,4 тыс. чел.), превышение наблюдаемых значений над базовым уровнем составило 31%
- Наибольший вклад в общее число избыточных смертей внесли регионы, в которых расположены крупнейшие городские агломерации
- Выявлены значительные сельско-городские различия: 47,200 избыточных смертей отмечено в городах, 10,400 в сельской местности



Избыточное количество смертей и общая численность населения по типам населенных пунктов

% в избыточных смертях % в населении


Региональные особенности избыточной смертности во время жары

- Географические особенности избыточной смертности городского и сельского населения схожи. Более широкие доверительные интервалы для смертности в сельской местности
- Регионы Черноземья и Средней Волги кластеры высокой избыточной смертности как для городского, так и для сельского населения
- Статистически незначимый прирост смертности на Северо-Западе и Северном Кавказе (в особенности в сельской местности)

Избыточная смертность в больших городах во время волны жары

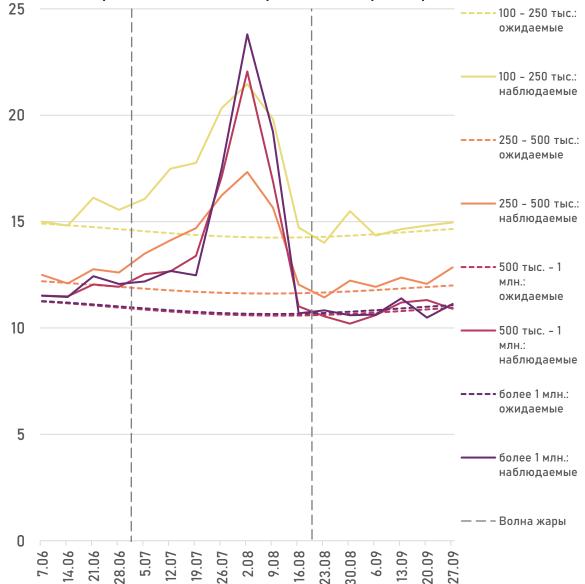
- «Пояс высокой смертности» от Курска до Ижевска
- Существенно более высокая избыточная смертность характерна для городов с населением более 500 тыс. чел.
- Слишком высокий разброс оценок для городов с 100-200 тыс. жителей

Прирост СКС, 27-33 недели 2010 г.:

Мурманск

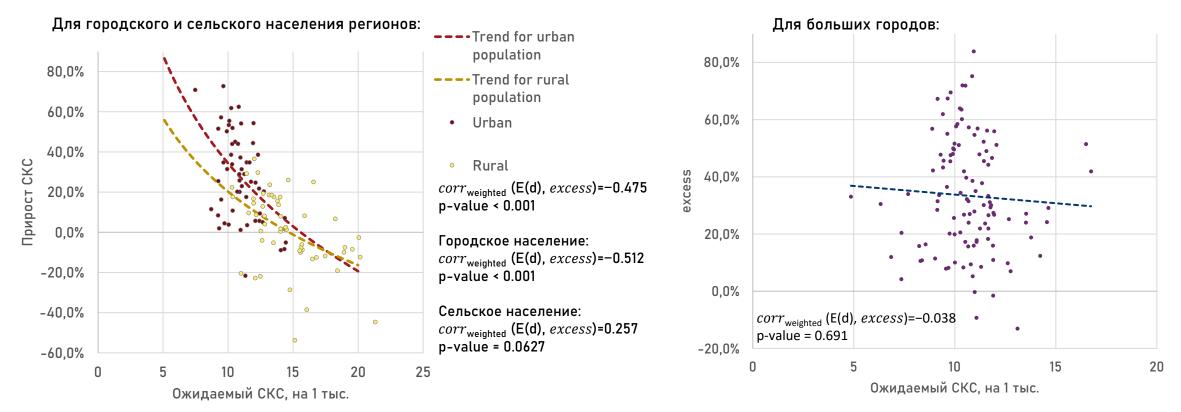
менее 0%

0-15%


Пики избыточной смертности

- Избыточная смертность наблюдалась на протяжении всего периода волны жары
- Наибольший прирост смертности пришелся на 31 неделю (02.08-09.08)
- Колебания смертности сильнее выражены в более крупных городах
- Выявление лаговых эффектов требует рассмотрения дневных оценок избыточной смертности
- «Эффект жатвы» возможен в некоторых городах, пострадавших сильнее всего

Избыточная смертность в городах с наибольшим приростом СКС во время жары


	до волны		после			
	жары	волна жары	волны			
	•		жары			
	17.05 - 05.07	05.07 - 23.08	23.08 - 11.10			
Камышин	9,93%	84,17%	-2,26%			
Липецк	-0,98%	75,95%	2,35%			
Саратов	5,27%	72,41%	-0,32%			
Тольятти	4,60%	72,38%	0,39%			
Чебоксары	16,38%	69,71%	2,18%			
Казань	5,62%	67,67%	7,38%			
Жуковский	18,18%	67,25%	12,02%			
Рязань	-1,60%	64,29%	-0,20%			
Волжский	4,57%	61,93%	-6,40%			
Тамбов	8,55%	60,74%	2,78%			
Арзамас	6,75%	59,18%	-1,82%			
Ульяновск	3,47%	57,92%	8,39%			
Новочебоксар ск	-4,47%	57,79%	6,55%			
Наб. Челны	4,91%	57,17%	4,38%			
Муром	4,57%	56,74%	25,93%			
Ниж. Новгород	7,18%	56,35%	2,03%			
Дзержинск	3,59%	56,07%	6,02%			
Волгоград	12,09%	55,30%	-4,36%			
Йошкар-Ола	2,04%	55,15%	-5,80%			
Новокуйбыше вск	14,44%	52,73%	2,64%			

Наблюдаемые и ожидаемые значения понедельного СКС в городах европейской России различного размера

Эффект низкой базы?

- Более высокий прирост на территориях с исходно низкими показателями коэффициентов смертности
- Недооценка ожидаемого уровня смертности в связи с ее быстрым сокращением на протяжении референтного периода
- Для городов зависимость избыточной смертности от базового уровня не выражена в связи со значительными пространственными различиями и слишком широкими доверительными интервалами

Поиск факторов и детерминант избыточной смертности

- Продолжительность волны жары: число дней с среднесуточной температурой выше 97 перцентили (всего летом 2010 г. и подряд)
- Индикаторы температуры: PET (эквивалентнофизиологическая температура) и t2m (температура на высоте 2 м)
- Социально-экономические факторы: доля лиц с высшим образованием, уровень жизни/доходы, жилищные условия, прокси-индикаторы (возрастная структура, размер города)
- Качество воздуха: концентрация РМ10, частота лесных пожаров, выбросы от стационарных источников
- Фиксированные эффекты: фактор региона

$$log(Y) = \beta_0 + \beta X,$$
$$Y = \frac{O - E}{E}$$

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14	Model 15	Model 16
(Intercent)	-1.236***	-4.741***	-3.659***	-4.687***	-3.407***	-3.956***	-3.597***	-5.644***	-3.089***	-3.151***	-4.149***	-4.453***	-4.754***	-3.710***	-2.417**	-4.441***
(Intercept)	(0.064)	(0.497)	(0.477)	(0.639)	(0.232)	(0.462)	(0.390)	(0.633)	(0.717)	(0.691)	(0.663)	(0.853)	(0.976)	(0.508)	(0.764)	(0.912)
Beere Tueš Perus Wens		0.998***				0.253		0.182	0.354+	0.356+	0.251	0.259	0.268	0.391*	0.566**	0.457*
Всего дней волны жары		(0.141)				(0.184)		(0.175)	(0.194)	(0.195)	(0.185)	(0.185)	(0.185)	(0.197)	(0.208)	(0.199)
Макс. продолжительность			0.755***				0.092									
волны жары, дней			(0.148)				(0.152)									A
				0.999***												
PET				(0.184)												A
				(4114-1)	1.465***	1.236***	1.394***	0.856***	1.180***	1.174***	1.256***	1.255***	1.211***	1.110***	0.994***	0.644**
Отклонение сут. максимума t2m					(0.153)	(0.226)	(0.193)	(0.237)	(0.227)	(0.228)	(0.232)	(0.228)	(0.228)	(0.237)	(0.238)	(0.245)
					(0.100)	(0.220)	(0.170)	0.946***	(0.227)	(0.220)	(0.202)	(0.220)	(0.220)	(0.201)	(0.200)	0.938***
Фактический СКР								(0.257)								(0.259)
								(0.237)	0.227						-0.508*	+
% высш. обр., 20 – 64 лет									-0.337							-0.343
									(0.214)	0.007					(0.227)	(0.219)
% высш. обр., 20+ лет										-0.324						A
• /										(0.208)						
% в возрасте 65+											-0.080					
76 B BOSPGETE 00 1											(0.196)					4
% в возрасте 80+												-0.094				A
% B BOSPACTE OUT												(0.135)				
													0.063			
Численность населения													(0.068)			A
														-0.590	-0.635+	-0.749*
Город: 100 – 250 тыс.														(0.362)	(0.356)	(0.337)
														-0.596	-0.586	-0.693*
Город: 250 – 500 тыс.														(0.372)	(0.365)	(0.346)
														-0.473	-0.458	-0.547
Город: 500 тыс. – 1 млн.														(0.376)	(0.369)	(0.349)
															-	
Город: более 1 млн.														-0.323	-0.205	-0.358
•	10.7	10.7	10.1	10.1	10.1	10.1	10.1	10.1	10 /	10.4	10.4	10.7	10.1	(0.404)	(0.399)	(0.379)
Всего наблюдений:	106	106	106	106	106	106	106	106	106	106	106	106	106	106	106	106
R2	0.000	0.326	0.201	0.220	0.468	0.478	0.470	0.539	0.490	0.490	0.479	0.480	0.482	0.500	0.525	0.581
R2 Adj.	0.000	0.320	0.194	0.213	0.463	0.468	0.460	0.526	0.475	0.475	0.464	0.465	0.467	0.470	0.491	0.547
BIC	-46.5 -41.2	-86.4	-68.3	-70.9 -62.9	-111.5	-111.4	-109.9 -99.2	-122.7 -109.3	-112.0	-111.9 -98.6	-109.6 -96.3	-109.9 -96.6	-110.3	-108.1	-111.3 -87.4	-122.8 -96.1
	-41.2	-78.4 -84.848	-60.4 -93.856	-62.9 -92.599	-103.5 -72.278	-100.8 -71.321	-99.2 -72.089	-64.699	-98.6 -70.050	-70.074	-96.3 -71.235	-96.6 -71.072	-97.0 -70.875	-86.8 -68.997	-66.368	-96.1
Log.Lik.	-105.774															
PMCE	0.77	50.352	26.224	29.351	91.664	47.157	45.738	39.801	32.714	32.684	31.239	31.440	31.683	16.525	15.446	16.828
RMSE	0.66	0.54	0.59	0.58	0.48	0.47	0.48	0.45	0.47	0.47	0.47	0.47	0.47	0.46	0.45	0.42

Основные проблемы и ограничения

- Модель базового уровня содержала трендовую компоненту. Вследствие быстрого сокращения на протяжении референтного периода возможно ожидать занижение уровня ожидаемой смертности
- Оценки избыточной смертности оказались незначимыми и недостоверными для ряда городов численностью населения 100 200 тыс. чел. из-за проблемы малых выборок
- Регламентные таблицы с возрастной структурой городов (Одинцово, Ногинск, Балашиха) ретроспективно не пересчитывались после переписи 2010 г. Поэтому к концу межпереписного периода была накоплена значительная ошибка учета населения, повлиявшая на расчет СКС
- Существуют различные подходы к выделению волн жары. Выбор границ изучаемого периода (27-33 недели 2010 г.) – предмет дальнейшей дискуссии
- Анализ понедельной смертности существенно ограничивает возможности изучения ряда краткосрочных временных эффектов (в частности, лагов)
- Невозможность рассмотрения причинно-следственных связей без включения дополнительных детерминант: избыточная смертность во время жары не означает избыточной смертности вследствие жары

Выводы и направления дальнейшей работы

- Географические особенности избыточной смертности во время жары 2010 г.: наибольший прирост наблюдался в Поволжье, Черноземье, Москве
- Расселенческие особенности: был выявлен сельско-городской разрыв в избыточной смертности, сильнее всего пострадали города численностью населения более 500 тыс. чел.
- Сопоставимость результатов работы с выводами, полученными в аналогичных исследованиях по другим странам
- Пики смертности в целом ассоциированы с наибольшими температурными аномалиями во время жары. Однако достоверных выводов о наличии лагов и «эффекта жатвы» сделать невозможно